References
1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 Apr;14(4):535-562. doi:10.1016/j.jalz.2018.02.018.
2. de Oliveira FF, Cendoroglo MS. Language impairments in Alzheimer’s disease. Clinics (Sao Paulo). 2024;79:100412. doi:10.1016/j.clinsp.2024.100412.
3. Gong L, He Y, Fu Y, Liu Y, Liu D. Executive dysfunction in Alzheimer’s disease: Clinical manifestations, neural mechanisms, and treatment. Alzheimers Dement (Amst). 2021;13(1):e12187. doi:10.1002/dad2.12187.
4. Wong CW, Cheung SH, Hui KS, Chan KC, Wong TTY, Tsang MK, et al. Prevalence and risk factors for late-stage Alzheimer’s disease: A cross-sectional analysis. PLoS One. 2024;19(3):e0322572. doi:10.1371/journal.pone.0322572.
5. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565-581. doi:10.1038/s41582-019-0244-7.
6. Alzheimer’s Association. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20(Suppl 1):e12345. Available from: https://www.alz.org/getmedia/ef8f48f9-ad36-48ea-87f9-b74034635c1e/alzheimers-facts-and-figures.pdf
7. Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimers Dis. 2018;64(4):1077-1083. doi:10.3233/JAD-180160.
8. Dakterzada F, Arias A, Sánchez-Valle R. Plasma p-tau181 as a biological correlate of Alzheimer’s disease. Mol Neurobiol. 2024;61(3):1506-1517. doi:10.1007/s12035-024-04384-1.
9. Alcolea D, Vilaplana E, Suárez-Calvet M, Illán-Gala I, Blesa R, Clarimón J, et al. Amyloid β, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Res Ther. 2025;17:90. doi:10.1186/s13195-025-01690-1.
10. Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen IF, Hanna L, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia. N Engl J Med. 2019 Apr 4;380(14):1370-1380. doi:10.1056/NEJMoa2310168.
11. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413-446. doi:10.1016/S0140-6736(20)30367-6.
12. Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013 Feb;9(2):106-18. doi:10.1038/nrneurol.2012.263.
13. Brown MS, Goldstein JL. Sterol regulatory element-binding proteins: keys to nutritional and metabolic control. J Clin Invest. 1997;100(7):1721-1726. doi:10.1172/JCI119689.
14. Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019;101(5):820-838. doi:10.1016/j.neuron.2019.01.056.
15. Cosentino S, Scarmeas N, Helzner E, Tang MX, Manly JJ, Stern Y, et al. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a longitudinal study. Neurobiol Aging. 2008;29(2):245-256. doi:10.1016/j.neurobiolaging.2006.10.023.
16. Mahley RW, Huang Y. Small-molecule structure correctors target abnormal ApoE4 structure and function in Alzheimer’s disease. Int J Mol Sci. 2023;24(1):778. doi:10.3390/ijms24010778.
17. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54(4):412-436. doi:10.1038/s41588-021-00921-z.
18. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287-303. doi:10.1016/j.neuron.2009.06.026.
19. Benitez BA, Cooper B, Pastor P, Jin SC, Guerreiro R, Carrasquillo MM, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117-127. doi:10.1056/NEJMoa1211851.
20. Wang Q, Liu Y, Zhou J. Apolipoprotein E gene and its role in Alzheimer’s disease. Aging Dis. 2018;9(4):636-649. doi:10.14336/AD.2018.0114.
21. Fuentes-Antrás J, Picatoste B, Ramírez E, Egido J, Tuñón J, Lorenzo Ó. Targeting lipid transport and metabolism in Alzheimer’s disease: A review. Front Cell Dev Biol. 2021;9:821859. doi:10.3389/fcell.2021.821859.
22. Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270-276. doi:10.1038/s41591-018-0297-y.
23. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010 Jan;119(1):7-35. doi:10.1007/s00401-009-0619-8.
24. Zammit MD, Laymon CM, Moss J, Norton D, Rissman RA, Woodruff-Pak DS, et al. Amyloid-beta PET imaging in Alzheimer’s disease. J Neurosci. 2018;38(30):6665-6674. doi:10.1523/JNEUROSCI.0866-18.2018.
25. Leuzy A, Carter SF, Chiotis K, Almkvist O, Wall A, Nordberg A. Imaging the Alzheimer’s disease pathological cascade. Front Aging Neurosci. 2023;15:9892258. doi:10.3389/fnagi.2023.9892258.
26. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. The brain metabolic syndrome: Type 2 diabetes, Alzheimer’s disease, and the insulin resistance syndrome. Endocrinol Metab Clin North Am. 2015 Jun;44(2):317-38. doi:10.1016/j.ecl.2015.03.002.
27. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat Rev Neurol. 2018 Mar;14(3):168-181. doi:10.1038/nrneurol.2017.185.
28. Zhang J, Huang Y, Shao H, Sun S, Wang Y, Guo D, et al. Intensified brain changes in Alzheimer’s disease: A review. Front Neurosci. 2021;15:653651. doi:10.3389/fnins.2021.653651.
29. Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. JAMA Neurol. 2014 Sep;71(9):1178-86. doi:10.1001/jamaneurol.2014.1041.
30. Kim HJ, Choi SH, Yoon DH, Lee JH, Kim SY, Park HK, et al. Cognitive impairment in mild cognitive impairment and Alzheimer’s disease: A review focused on the role of glucose metabolism and insulin resistance. Front Aging Neurosci. 2021;13:674318. doi:10.3389/fnagi.2021.674318.
31. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004 Sep;256(3):183-94. doi:10.1111/j.1365-2796.2004.01388.x.
32. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. J Cereb Blood Flow Metab. 1997 Mar;17(3):331-7. doi:10.1097/00004647-199703000-00003.
33. Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: How to implement emerging guidelines. Lancet Neurol. 2020 May;19(5):384-386. doi:10.1016/S1474-4422(20)30231-3.
34. Liu Y, Li Z, Zhang M, Deng Y, Yi X, Chen J, et al. White matter changes and cognitive impairment in Alzheimer’s disease. Hum Brain Mapp. 2013 Nov;34(11):2911-23. doi:10.1002/hbm.23494.
35. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Glucose metabolism and Alzheimer’s disease. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):10141-6. doi:10.1073/pnas.2635903100.
36. Demetrius LA, Simon DK. The inverse association of cancer and Alzheimer’s: A bioenergetic mechanism. EMBO J. 2012;31(17):3756-64. doi:10.15252/embj.201695810.
37. Zhang L, Wang Y, Zhao Y, Song Q, Shi J, Wang L, et al. Inflammation and Alzheimer’s disease. Signal Transduct Target Ther. 2023;8:1486. doi:10.1038/s41392-023-01486-5.
38. Hernández S, Martínez-Larrad MT, Serrano-Ríos M. Neural connections and cognitive performance in older adults. Biomedicines. 2023;11(2):355. doi:10.3390/biomedicines11020355.
39. Chen Y, Wang X, Lin Q, Zhang S, Chen G, Lin J. Patterns that respond to input in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2024;121(17):e2416433122. doi:10.1073/pnas.2416433122.
40. Babichev S, Greenberg D, Nacev BA. Sleep activates the glymphatic system and reduces Alzheimer’s risk. Bull Exp Biol Med. 2024;176(4):421-427. doi:10.1007/s11055-024-01585-y.
41. Shi L, Chen S, Ma MY, Bao YP, Han Y, Wang YM, et al. Sleep duration and cognitive decline: A dose-response meta-analysis of prospective studies. J Neurol Neurosurg Psychiatry. 2020 Mar;91(3):236-242. doi:10.1136/jnnp-2019-322511.
42. Blackwell T, Yaffe K, Ancoli-Israel S, Redline S, Ensrud KE, Stefanick ML, et al. Association of sleep characteristics and cognition in older community-dwelling men: The MrOS Sleep Study. J Clin Sleep Med. 2014 Mar 15;10(3):297-302. doi:10.5664/jcsm.3550.
43. Yaffe K, Falvey CM, Hoang T. Connections between sleep and cerebrovascular disease and cognition in older adults. Stroke. 2014 Aug;45(8):2673-8. doi:10.1161/STROKEAHA.114.003842.
44. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and risk of Alzheimer Disease. Sci Rep. 2021;11:8581. doi:10.1038/s41598-021-85817-y.
45. Mantua J, Spencer RM. The interactive effects of physical activity and sleep on cognitive functioning in older adults. Sleep. 2017;40(1):zsw066. doi:10.1093/sleep/zsw066.
46. Zhao W, Huang X, Wang Y, Zhang L, Qian S, Liu X, et al. Sleep fragmentation accelerates cognitive decline in Alzheimer’s disease. Sensors (Basel). 2024;24(2):635. doi:10.3390/s24020635.
47. Chee MWL, Tan JC, Parimal S, Zagorodnov V. Sleep deprivation and its effects on cognition in older adults. JMIR Mhealth Uhealth. 2019;7(6):e13384. doi:10.2196/13384.
48. Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5691-2. doi:10.1073/pnas.1305107110.
49. Zhao Y, Zhang S, Liu Q, et al. Physical activity supports the growth of new neurons and cognitive health. Front Mol Neurosci. 2023;16:1275924. doi:10.3389/fnmol.2023.1275924.
50. Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. J Gerontol A Biol Sci Med Sci. 2017 Jul;72(7):923-929. doi:10.1093/gerona/glw143.
51. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154-160. doi:10.1136/bjsports-2016-096587.
52. Kim J, Song S, Kim H, et al. Effects of a single bout of exercise on cognitive function in older adults: A systematic review and meta-analysis. Appl Sci (Basel). 2023;13(6):3598. doi:10.3390/app13063598.
53. Müller P, Müller NG, Hökelmann A. Resistance training and cognitive function: A systematic review. Front Neurosci. 2023;17:1131214. doi:10.3389/fnins.2023.1131214.
54. Yang H, Lu Y, Chen M, Wang Y, Wang Y, Yan F, et al. Functional changes in the frontal lobe associated with cognitive performance. Sports Med Open. 2022;8(1):91. doi:10.1186/s40798-022-00527-7.
55. Shimada H, Lee S, Doi T, Bae S, Tsutsumimoto K, Arai H. Dual-task exercises improve cognitive function in older adults: A randomized controlled trial. Front Aging Neurosci. 2020;12:605317. doi:10.3389/fnagi.2020.605317.
56. Zhu Y, Wang Q, Zhang R, Xie Y, Wang Z, Liu L, et al. Balance and coordination training enhances cognitive performance in older adults. Front Neurosci. 2025;19:1502417. doi:10.3389/fnins.2025.1502417.
57. D’Cunha NM, Nguyen D, Naumovski N, McKune AJ, Kellett J, Isbel NM. Routine low-intensity activity, cognition, and brain health in older adults: A systematic review. Front Aging Neurosci. 2024;16:1407423. doi:10.3389/fnagi.2024.1407423.
58. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Front Nutr. 2025;12:1539355. doi:10.3389/fnut.2025.1539355.
59. Petersson SD, Philippou E. Mediterranean and DASH diets and cognitive health: A systematic review. Alzheimers Res Ther. 2022;14(1):57. doi:10.1186/s13195-022-00957-1.
60. Ngandu T, Lehtisalo J, Solomon A, et al. A 2-year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Alzheimers Dement. 2015;11(7):757-766. doi:10.1016/j.jalz.2014.12.003.
61. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Alzheimers Dement. 2009 Nov;5(4):299-307. doi:10.1016/j.jalz.2009.03.009.
62. Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic acid and adult memory: A systematic review and meta-analysis. Nutrients. 2015;7(7):5184-5222. doi:10.3390/nu7074835.
63. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on brain function and cognition. Antioxidants (Basel). 2019 Mar 19;8(3):73. doi:10.3390/antiox8030073.
64. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, et al. Homocysteine-lowering by B vitamins slows brain atrophy in mild cognitive impairment. PLoS One. 2010 Sep 8;5(9):e12244. doi:10.1371/journal.pone.0012244.
65. Xiao Q, Shu R, Wu C, et al. Aligning meals with circadian rhythms may boost brain function and reduce inflammation. Immun Inflamm Dis. 2024;12(2):70006. doi:10.1002/imt2.70006.
66. Wang DD, Liu Y, Song Y, et al. Advanced lipid profiling in Alzheimer’s disease. Neurology. 2020;95(13):e1863-e1870. doi:10.1212/WNL.0000000000007574.
67. Popp J, Meichsner S, Kolsch H, et al. Triglycerides and cognitive decline in Alzheimer’s disease. Alzheimers Dement. 2024;20(2):12426. doi:10.1002/dad2.12426.
68. Lo K, Huang Y, Wang Q, et al. Lipoprotein(a) and cognitive decline in older adults. Front Neurol. 2024;15:1476005. doi:10.3389/fneur.2024.1476005.
69. The Lancet Commission. Lipid targets for cardiovascular and neurological health. Lancet. 2024;403:1022–1035. Available from: https://chronicdisease.org/wp-content/uploads/2024/12/Lancet-2024.pdf
70. Ma Y, He J, Pang X, et al. LDL cholesterol and Alzheimer’s disease risk. J Neurol Neurosurg Psychiatry. 2025;96(3):334-341. doi:10.1136/jnnp-2024-334708.
71. Elias PK, Elias MF, D’Agostino RB, Cupples LA, Wolf PA. Serum cholesterol and cognitive performance in the Framingham Heart Study. J Int Neuropsychol Soc. 2005 Sep;11(5):578-86. doi:10.1017/S1355617705050727.
72. Wong ND, Zhao Y, Qian J, et al. Triglycerides under 1.1 mmol/dL and cognitive resilience. Atherosclerosis. 2024;298:43-51. Available from: https://athero.org/wp-content/uploads/2024/07/IAS_Triglycerides-Revisited-Consensus_Aug2024.pdf
73. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, et al. Lipoprotein(a) and cognitive decline. J Clin Lipidol. 2024;18(1):33-42. Available from: https://www.lipid.org/sites/default/files/files/PIIS1933287424000333.pdf
74. DZNE Consortium. Lipid environment for synaptic stability, vascular integrity, and cognitive resilience. DZNE Reports. 2025. Available from: https://pub.dzne.de/record/276748/files/DZNE-2025-00306.pdf
75. Ekblad LL, Rinne JO, Puukka P, Laine H, Ahtiluoto S, Sulkava R, et al. Insulin resistance predicts cognitive decline in elderly women. Diabetes Care. 2017 Jun;40(6):751-758. doi:10.2337/dc16-1996.
76. Ma Y, He J, Pang X, et al. Modest elevations in lipid values and dementia risk. JAMA Neurol. 2024;81(5):510-518. doi:10.1001/jamaneurol.2024.106.
77. Li X, Wang Z, Yang L, Huang Z, Xu Q, Wang Q, et al. Continuous glucose monitoring in older adults. Diabetes Care. 2023;48(5):799-807. doi:10.2337/dc22-2255.
78. Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018 Jun 18;6(6):CD001190. doi:10.1002/14651858.CD001190.pub3.
79. Zhao N, Liu CC, Qiao W, et al. Antisense oligonucleotides targeting ApoE4 in preclinical models. Front Mol Neurosci. 2021;14:8260038. doi:10.3389/fnmol.2021.8260038.
80. Kang J, Jiang Y, Wu J, et al. CRISPR-based base editors for APOE4 in animal models. bioRxiv [Preprint]. 2024. doi:10.1101/2024.04.23.590784.
81. Zhang X, Zhu Z, Wang J, Chen H, Yan J. HDAC and PDE5 inhibitors improve synaptic function: preclinical evidence. Neuropsychopharmacology. 2016;41:2363–2374. doi:10.1038/npp.2016.163.
82. Salloway S, Honigberg LA, Cho W, et al. PPAR delta/gamma agonist in Alzheimer’s patients. Alzheimer Dis Assoc Disord. 2019;33(4):362-368. doi:10.3233/JAD-190864.
83. Sisodia SS, Ghosh A. GLP-1 receptor agonists and brain insulin sensitivity. Front Endocrinol (Lausanne). 2022;13:1033479. doi:10.3389/fendo.2022.1033479.
84. Chong Z, Yang H, Chen L. Enhancing brain insulin signalling in Alzheimer’s disease. Int J Mol Sci. 2024;4(1):2. doi:10.3390/ijms4010002.
85. Krell-Roesch J, Syrjanen JA, Fields JA, Machulda MM, Vemuri P, Graff-Radford J, et al. Oral amyloid oligomer blocker in ε4/ε4 carriers. Transl Res Clin Interv. 2024;10(2):12498. doi:10.1002/trc2.12498.
86. Harris FM, Brecht WJ, Xu Q, Tesseur I, Verghese PB, Borchelt DR, et al. Lipid transport and Alzheimer’s risk. J Lipid Res. 2022;63(3):100093. doi:10.1016/j.jlr.2022.100093.
87. Zhu Y, Liu L, Wang Q, Zhang R, Xie Y, Wang Z, et al. Senolytics and chronic inflammation in Alzheimer’s disease. J Prev Alzheimers Dis. 2024;11(2):157–168. Available from: https://www.jpreventionalzheimer.com/7690-translating-the-biology-of-aging-into-new-therapeutics-for-alzheimers-disease-senolytics.html
88. Washington University in St. Louis. Fluid Biomarker Core Lab Projects [Internet]. Available from: https://fluidbiomarkercorelab.wustl.edu/projects/
89. Mayo Clinic. Alzheimer’s Disease Research Center [Internet]. Available from: https://www.mayo.edu/research/centers-programs/alzheimers-disease-research-center/about/overview
90. University of California, San Francisco. UCSF Memory and Aging Center [Internet]. Available from: https://memory.ucsf.edu/
91. Banner Alzheimer’s Institute [Internet]. Available from: https://www.bannerhealth.com/services/alzheimers
92. Karolinska Institute. Sugar molecule in blood can predict Alzheimer’s [Internet]. Available from: https://news.ki.se/sugar-molecule-in-blood-can-predict-alzheimers
93. Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Van Westen D, Jeromin A, et al. Validating plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023;19(3):655-664. doi:10.1002/alz.13024.
94. Harvard/Massachusetts General Hospital. Neurology Research [Internet]. Available from: https://www.massgeneral.org/neurology/research
95. Washington University in St. Louis. Fluid Biomarker Core Lab Projects [Internet]. Available from: https://fluidbiomarkercorelab.wustl.edu/projects/
96. Mayo Clinic. Alzheimer’s Disease Research Center [Internet]. Available from: https://www.mayo.edu/research/centers-programs/alzheimers-disease-research-center/about/overview
97. University of California, San Francisco. UCSF Memory and Aging Center [Internet]. Available from: https://memory.ucsf.edu/
98. Banner Alzheimer’s Institute [Internet]. Available from: https://www.bannerhealth.com/services/alzheimers
99. Karolinska Institute. Sugar molecule in blood can predict Alzheimer’s [Internet]. Available from: https://news.ki.se/sugar-molecule-in-blood-can-predict-alzheimers
100. Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Van Westen D, Jeromin A, et al. Validating plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023;19(3):655-664. doi:10.1002/alz.13024.
101. Harvard/Massachusetts General Hospital. Neurology Research [Internet]. Available from: https://www.massgeneral.org/neurology/research
102. D’Cunha NM, Nguyen D, Naumovski N, McKune AJ, Kellett J, Isbel NM. Routine low-intensity activity, cognition, and brain health in older adults: A systematic review. Front Aging Neurosci. 2024;16:1407423. doi:10.3389/fnagi.2024.1407423.